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KR

Knowledge Representation (KR): How knowledge can be modeled and
utilized by a computer system

to perform tasks such as reasoning, problem-solving, decision-
making, and learning

• Symbolic KR (symbolism, classic AI)
– Symbols standing for things in the world
Standpoint: AI needs to represent world knowledge
like how humans do

• Neural KR (connectionism, generative AI)
– Embedding spaces (compression) for things in the world
Standpoint: AI requires data to represent world knowledge in a

hidden way
rather than explicitly representing world knowledge

• Neurosymbolic KR
– Integration of symbolism and connectionism
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KR and AI

KR is fundamental research of AI

• Much of AI involves building systems that are knowledge-based
reasoning over explicitly represented knowledge
– language understanding, planning, diagnosis, etc.

• Much of ML involves building systems that are data-driven
deep learning
– LLMs, etc.

• Some AI, to a certain extent mix
– game-playing, motor control, etc.

How much of intelligent behavior is knowledge-based??

Challenges each other
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Symbolic representation

• Knowledge • Ontology

• Production systems • Qualitative physics

• Structured descriptions • Frame and semantic networks

• Semantic web • Knowledge graph

• Change • Explanation and diagnosis

• Mental states • Commonsense
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Declarative vs. procedural representation

Declarative representation: “know-what”
knowledge expresses in declarative sentences (in a logic)
E.g., descriptive knowledge about the computation of matrixes

Procedural representation: “know-how”
knowledge expresses in procedures (in a programming language)
E.g., the procedure of computing matrixes

Theorem proving (like resolution) is a general-purpose domain-independent
method of reasoning

does not require the user to know how knowledge will be used

Want to communicate to theorem-proving procedure by some guid-
ance based on properties of the domain (like LEAN)

– perhaps a specific method to use
– perhaps merely a method to avoid
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Knowledge

Knowledge: things in the world
–Language
E.g., a logical language
–Representation, symbols standing for things
E.g., (logical) sentences
–Reasoning
E.g., proofs and model checking

In philosophy, the study of knowledge is called epistemology
Plato defined knowledge as “justified true belie” (ongoing de-

bate)

Belief: not necessarily true and/or held for appropriate reasons
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Knowledge base

Separation between the knowledge base and reasoning procedure should
be maintained

Knowledge base (KB): to store structured and unstructured inform.
– needed to know facts about the world
– to distinguish from database
– – not just tables with numbers and strings

– scaled up with Internet documents/hypertext/multimedia
– – known as Web Content Management

A good KB should be expressive, concise, unambiguous, context-
insensitive, effective, clear and correct

Knowledge engineering (expert systems, knowledge-based systems):
the process of building a knowledge base
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Knowledge engineering vs. software engineering#

The knowledge engineer or agent usually interviews the real experts
or environments to become educated about the domain and to elicit
required knowledge in a process called knowledge acquisition

Knowledge engineering Software engineering (Programming)
1. Choosing a logic Choosing a programming language
2. Building a knowledge base Writing a program
3. Implementing the proof theory Choosing or writing a compiler
4. Inferring new facts Running a program

Should be less work
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Ontology

Ontology: a vocabulary for the domain knowledge

Ontological engineering: representing various ontology

The five-step methodology

1. Decide what to talk about

2. Decide on a vocabulary of predicates, functions and constants

3. Encode general knowledge about the domain

4. Encode a description of the specific problem instance

5. Pose queries to the inference procedure and get answers

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 10



Example: The electronic circuits domain
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A1

X1
X2

O1
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Ontological engineering

1. Decide what to talk about
e.g., gates AND, OR, XOR and NOT

2. Decide on a vocabulary of predicates, functions and constants
e.g., Out(1, X1)

3. Encode general knowledge about the domain
e.g., ∀t1t2Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)

4. Encode a description of the specific problem instance
e.g., Type(X1) = XOR

5. Pose queries to the inference procedure and get answers
e.g., what combinations of inputs would cause the first output

of C1 (the sum bit) to be off? The answer ...
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General ontology

A general-purpose ontology has advantages over a special-purpose
one

• Categories

• Measures

• Composite objects

• Time, Space, and Change

• Events and Processes

• Physical objects

• Substances

• Mental objects and belief
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The world ontology

Anything

AbstractObjects Events

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

Hard to build a real-world ontology
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Some KBs or ontologies#

There are some routes for building very larger KBs or ontologies:
– CYC: creating the ontology and writing axioms from cyclopedia

(1990)
– DBpedia: importing categories, attributes and values fromWikipedia

(2007)
– TextRunner: building by reading a large corpus of Web pages

(2008)
– OpenMind: building by volunteers who proposed facts and com-

monsense knowledge in English (2002)
– Knowledge Graph (KG, previous Freebase): building by Google

and holding more than 70 billion facts (2012)
– Wikidata, Linking Open Data (LOD), YAGO etc.

Other data sources (also known Deep Web): MusicBrainz, DrugBank
etc.
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Production systems

Production (rule-based) systems:
– working memory: a knowledge base
– rule memory: a set of inference rules with form
p1 ∧ · · · ∧ pn ⇒ act1 ∧ · · · ∧ actm
where pi are literals, and actj are actions to take when the pi are

all satisfied – forward chaining
– match phase: in each cycle, the system computes the subset of

rules whose left-hand side is satisfied by the current contents of the
working memory

– conflict resolution phase: the system decides which of the rules
should be executed

– act phase: in each cycle, the system executes the action(s) in
the chosen rule(s)
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Production systems

Inefficient forward chaining unification match algorithm:
E.g., If there are w = 100 elements in working memory and r =

200 rules each with n = 5 elements in the left-hand side, and solving
a problem requires c = 1000 cycles, then the naive match algorithm
must perform wrnc = 108 unifications

Rete algorithm of OPS5
E.g., rule memory

A(x) ∧ B(x) ∧ C(y) ⇒ addD(x)
A(x) ∧ B(x) ∧D(y) ⇒ addE(x)
A(x) ∧ B(x) ∧ E(y) ⇒ addDeleteA(x)

and working memory

{A(1), A(2), B(2), B(3), B(4), C(5)}
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Production systems

A(1),A(2) B(2),B(3),B(4) A(2)

B(2)

C(5) D(2)

A B

D

A=B

A=D

C

E

add D

add E

delete A
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Production systems#

Conflict resolution phase: some control strategy
– No duplication
– Recency
– Specificity
– Operation priority

OPS5
1. discard rule instances that have already been used
2. order remaining instances in terms of recency of working mem-

ory matching 1st condition (and then of 2nd condition, etc.)
3. if still no single rule, order rules by the number of conditions
4. select arbitrarily among those remaining

Production systems are essentially programming languages
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Expert systems#

So-called expert systems are production systems
MYCIN: aided physicians in treating bacterial infections

– approximately 500 rules for recognizing about 100 causes of
infection

E.g.
IF
the type of x is primary bacteremia
the suspected entry point of x is the gastrointestinal tract
the site of the culture of x is one of the sterile sites
THEN
there is evidence that x is bacteroides
– certainty factors: numbers from [0, 1] attached to conclusions

to rank order

Recently, IBM Watson Health systems, but replaced by LLMs-based
medicine systems
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Qualitative physics

Qualitative physics (qualitative reasoning) concerns specifically with
constructing a logical, non-numeric theory of physical objects and
processes

Measure: the values of the properties that we assign for objects

Price(tomato) = $(0.3)

∀d.d ∈ Days⇒ Duration(d) = Hours(24)
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Composite object

Composite object: any object that has parts
E.g., PartOf (taiwan, china)

Schema (script): structure description
∀aBiped(a) ⇒
∃l1l2bLeg(l1) ∧ Leg(l2) ∧ Body(b) ∧
Attached(l1, b) ∧ Attached(l2, b) ∧
l1 6= l2 ∧ ∀l3Leg(l3) ∧ PartOf (l3, a) ⇒ (l3 = l1 ∨ l3 = l2)

Various common knowledge of physics processes
say, water cycle
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Structured descriptions

In FOL, all categories and properties of objects are represented by
atomic predicates

– correspond to simple nouns, e.g., Person
– seem to be more like noun phrases, e.g., MarriedPerson
– – have an internal structure and connections to other predicates
e.g., a married person must be a person

These connections hold by definition, not by virtue of the facts
we believe about the world

Need a way to break apart a predicate to see how it is formed from
other predicates
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Tradeoff between expressiveness and tractability

Reasoning procedures required for more expressive languages
may not work very well in practice

Tradeoff: expressiveness vs. tractability
E.g., Description Logics (see later)
– limited languages: between propositional language and first-

order language with decidability
– vivid reasoning: easy to implement
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Categories

Category: include as members all objects having certain properties
E.g., An object (penguin) is a member of a category (birds)
penguin ∈ birds

Subclass relations organize categories into a taxonomy (hierarchy)
E.g., a category is a subclass of another category
tomatoes ∈ fruit

Inheritance: the individual inherits the property of the category from
their membership
E.g., Child(x, y)∧Familyname(john, y) → Familyname(john, x)

The problem: natural kind or inheritance with exception
E.g., ∀x.x ∈ Typical(bird) ⇒ Flies(x)

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 25



Semantic networks

Inheritance is the result of (path-based) transitivity reasoning over
paths in a network

– inheritance in trees
– inheritance in DAGs

• if-then reasoning in graphical form

• “does a inherit from b?” is the same as “is b in the transitive
closure of :IS-A (or subsumption) from a?”
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Inheritance reasoning

Inheritance with exceptions

∀rxb.Holds(r, x, b) ⇔
V al(r, x, b)∨ (∃px ∈ p∧Rel(r, p, b)∧¬InterveningRel(x, p, r))

∀xpr.InterveningRel(x, p, r) ⇔
∃iIntervening(x, i, p) ∧ ∃b′Rel(r, i, b′)

∀aip.Intervening(x, i, p) ⇔ (x ∈ i) ∧ (i ⊂ p)

Multiple inheritance
– credulous accounts choose arbitrarily
– skeptical accounts are more conservative
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Description logics

Description logics (DLs): a family of logics with notations designed
to describe the definitions and properties of categories

Subsumption: checking if one category is a subset of another based
on their definitions

Classification: checking if an object belongs to a category

DLs focus on the tractability of inference and serve as theoretical
foundation for ontology
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Concepts, roles, constants

In DL, there are sentences that will be true or false (as in FOL)

In addition, there are three sorts of expressions that act like nouns
and noun phrases in natural language

– concepts are like category nouns, e.g., GraduateStudent
– roles are like relational nouns, e.g., :AreaOfStudy

(note “:” at start)
– constants are like proper nouns, e.g., johnSmith

These correspond to unary predicates, binary predicates and constants
respectively in FOL

However, unlike in FOL, concepts need not be atomic and can have
semantic relationships with each other
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A description logic: language#

Symbols of DL:
– atomic concepts, e.g., GraduateStudent
– roles: (all are atomic), e.g., AreaOfStudy
– constants

Four types of logical symbols:
– punctuation: [, ], (, )
– positive integers: 1, 2, 3, · · ·
– concept-forming operators: ALL, EXISTS, FILLS, AND
– connectives: ⊑, .=, and →
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A description logic: syntax#

The set of concepts is the least set satisfying
– Every atomic concept is a concept
– If r is a role and d is a concept, then [ALL r d] is a concept
– If r is a role and n is an integer, then [EXISTS n r] is a

concept
– If r is a role and c is a constant, then [FILLS r c] is a concept
– If d1, · · · , dk are concepts, then so is [AND d1, · · · , dk]

Three types of sentences
– If d and e are concepts, then (d ⊑ e) is a sentence
– if d and e are concepts, then (d .= e) is a sentence
– If d is a concept and c is a constant, then (c→ d) is a sentence
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A description logic: semantics#

Constants stand for individuals, concepts for sets of individuals, and
roles for binary relations

The meaning of a complex concept is derived from the meaning of
its parts the same way a noun phrases is

– [EXISTS n r] describes those individuals that stand in rela-
tion r to at least n other individuals

– [FILLS r c] describes those individuals that stand in the rela-
tion r to the individual denoted by c

– [ALL r d] describes those individuals that stand in relation r
only to individuals that are described by d

– [AND d1, · · · , dk] describes those individuals that are described
by all of the di

Formal semantics can be defined
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A description logic: example#

[AND Company
[EXISTS 7 : Director]
[ALL :Manager[AND Woman

[FILLS : Degree phD]]]
[FILLS :MinSalary $24.00/hour]]

“a company with at least 7 directors, whose managers are all women
with PhDs, and whose min salary is $24/hr”

A DL knowledge base is a set of DL sentences serving mainly to
– give names to definitions
– give names to partial definitions
– assert properties of individuals
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Frame

(b) Translation into first−order logic

S
u
b
s
e
t

S
u
b
s
e
t Subset

S
ub

se
t

Name(Opus,"Opus")

Name(Bill,"Bill")

Friend(Opus,Bill)

Friend(Bill,Opus)

Animals

Birds Mammals

Penguins Cats Bats

Rel(Alive,Animals,T)

Rel(Flies,Birds,T)

Rel(Legs,Birds,2)

Rel(Legs,Mammals,4)

Rel(Flies,Penguins,F)

Rel(Legs,Bats,2)

Rel(Flies,Bats,T)

Rel(Flies,Animals,F)

M
e
m

b
e
r

M
e
m

b
e
r

M
e
m

b
e
r

Opus     Penguins

Bill     Cats

Pat     Bats

Name(Pat,"Pat")

Flies:    F

Legs:    2

Flies:    T
Legs:    4

Flies:    F
Legs:    2

Flies:    T

Opus Bill

Friend: Friend:

Pat

Name:    PatName:    BillName:    Opus

Alive:    T

Subset

(a) A frame−based knowledge base

Birds       Animals

Mammals       Animals

Penguins       Birds

Cats       Mammals

Bats       Mammals
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Frame vs. logic

Link Type Semantics Example

A Subset

�!

B A � B Cats � Mammals

A Member

�!

B A2B Bill2Cats

A R

�!

B R(A, B) Bill Age

�!

12

A R

�!

B 8 x x2A ) R(x, B) Birds
Legs

�!

2

A
R

�!

B 8 x 9 y x2A ) y2B ^ R(x, y) Birds
Parent

�!

Birds

Frame and semantic networks can be formalized by FOL, and hence
can be thought of applications of FOL
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Procedural knowledge#

Organizing procedural knowledge
knowing facts by executing code

Object-oriented (OO) representation
– with enough procedures/sentences in a KB, need to organize

them
– in terms of objects
– – clustering procedures for determining properties, identifying

parts, interacting with parts, as well as constraints between parts, all
of objects

to make some things easier to find
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Basic frame language

Frames are object structures
– individual frames: represent a single object, e.g., person
– generic frames: represent categories of objects, e.g., students

An individual frame is a named list of buckets called slots. What goes
in the bucket is called a filler of the slot

(frame-name
< slot-name1 filler1 >
< slot-name2 filler2 > · · ·)

where frame names and slot names are atomic, and fillers are
either numbers, strings or the names of other individual frames

Notation: attribute-value pair (AVP)
individual frames: birds
slot names: : Fly (note “:” at start)
generic frames: Animals
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IS-A and inheritance

Individual frames have a special slot: INSTANCE-OF (IS-A)
whose filler is the name of a generic frame

(birds
<: INSTANCE-OF Animals >
<: Fly T > · · ·)

Similarly, generic frames have a slot: IS-A
whose filler is the name of another generic frame

Slots in generic frames can have attached procedures
– computing a filler (when no slot filler is given)
– propagating constraints (when a slot filler is given)
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IS-A and inheritance#

Specialization relationships imply that procedures and fillers of a more
general frame apply to more specific frame ⇒ inheritance

Basic (local) reasoning with frames
– user instantiates a frame, i.e., declares that an object or situation

exists
– slot fillers are inherited where possible
– causing more frames to be instantiated and slots to be filled

Object-oriented programming
specifying problems with frames is a style of programming

rather than declarative object-oriented modeling of the world
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Semantic Web

Semantic Web is the next generation of Web led by W3C (World
Wide Web Consortium, http://www.w3c.org) that makes the Web
pages understandable to machine

• RDF (Resource Description Framework) as underlying meta-data
representational language is a language of categories (ontology)

• The “semantics” of Web (data and facts) is realized by ontology,
OWL (Web Ontology Language) is an ontology representation lan-
guage

• Various Knowledge Graphs are implementations of KB

• Description logics are theoretical foundation of ontology and the
standards of ontology language

• The spirit of the semantic Web came from AI and can be viewed
as an application of AI (so-called Internet + AI)
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Resource description framework

RDF: W3C specifications as a metadata data model
– based on description logics
– syntax in XML (eXtensible Markup Language)

Triples: subject-predicate-object, or
(h,r,t) (head-relation-tail), entity-relationship (ER model)
– subject, object (entities): the (web) resources
– predicate: the relationship between the subject and the object

RDF graph: a collection of RDF triples represents a labeled, directed
multi-graph

SPARQL: query language for RDF graphs
– an SQL-like language
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Web ontology language

OWL: a family of ontology representation languages
– based on description logics
– RDF/OWL syntax in XML (eXtensible Markup Language)

OWL extends RDF Schema
– Class equivalent
Property
sameIndividualAs
· · ·

– RDFS
subClassOf
resource
ID
· · ·
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Example: OWL

Define the terms “Camera” and “SLR”, state that SLRs are a type
of Camera

< owl : Classrdf : ID = “Camera”/ >

< owl : Classrdf : ID = “SLR” >
< rdfs : subClassOfrdf : resource = “#Camera”/ >
< /owl : Class >
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Knowledge graph

Knowledge graph (KG, or linked data, multi-relational data): repre-
senting entities and relations

Triples (h,r,t): head-relation-tail
– based on RDF and description logics

E.g. KG services to enhance search engine results with information
gathered from a variety of sources

– Google knowledge panel, but replaced by LLMs
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Change

Time:
E.g., At(evening, sleep)

Event:
E.g., worldWarII, SubEvent(battleOfBritain, worldWarII)
An event that includes as subevents all events occurring in a given

time period is called interval

Space:
E.g., In(beijing, china)

∀xl.Location(x) = l ⇔
At(x, l) ∧ ∀l1At(x, l1) ⇒ In(l, l1)

Process: liquid event
E.g., T (working(teacher), todayLessonHours)
T (c, i) means that some event of type c occurred over exactly the

interval i
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Reasoning about change

Time interval
E.g., ∀ij.Meet(i, j) ⇔ T ime(End(i)) = T ime(Start(j))

Meet(i,j)

Before(i,j)
After(j,i)

During(i,j)

Overlap(i,j)
Overlap(j,i)

i

j

i
j

i

j

i

j
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Reasoning about change

Action
E.g., ∀xyi0.T (engaged(x, y), i0) ⇒

∃i1(Meet(i0, i1) ∨ After(i1, i0))∧
T (Marry(x, y) ∨ BreakEngagement(x, y), i1)

Fluent: something that changes across situations
E.g., President(USA)
T (democrat(president(USA)), AD2003)

Context
E.g., President(USA, 45th) = DonaldTrump
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Explanation and diagnosis

Reasoning
– deduction, such as if α, α ⇒ β, then β
– induction, such as α, β, then α ⇒ β
– abduction, such as β, α ⇒ β, then α

Abductive reasoning
– given α ⇒ β, from β, abduce α
α is sufficient for β or
one way for β to be true is for α to be true

Can be used for causal reasoning: (cause⇒ effect)
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Diagnosis

One simple diagnosis uses abductive reasoning
KB has facts about symptoms and diseases

including: (Disease ∧Hedges⇒ Symptoms)
Goal: find disease(s) that best explain observed symptoms
Observe: we typically do not have knowledge of the form
(Symptom ∧ · · · ⇒ Disease)
so the reasoning is not deductive

Non-uniqueness: multiple equally good explanations
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Explanation#

Given KB, and β to be explained, we want an α s.t.

1. α is sufficient to account for β
KB ∪ {α} |= β

2. α is not ruled out by KB
KB 6|= ¬α, i.e., KB ∪ {α} is consistent
otherwise, (p ∧ ¬p) would count as an explanation

3. α is as simple as possible

4. α is in the appropriate vocabulary

Call such α an explanation of β w.r.t. KB

The simplest explanation is the negation of a clause with a minimal
set of literal
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Mental states

Propositional attitudes (modalities): e.g., know, believe, want, ex-
pect, etc.

Multi-agents: e.g., an agent reasons about the mental processes of
the other agents

Formalizing reasoning about mental states
-syntactic theory
-possible worlds (modal logic)

Modal operators: B,K

B(a, ψ) or Ba(ψ): agent a believes that sentence ψ is true

K(a, ψ) or Ka(ψ): agent a knows that sentence ψ is true

B(A,ψ), A = {a1, · · · , an}: every agent of A believes that sentence
ψ is true
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A formal theory of belief#

Extending first-order language L:

Belief formulas: Believes(Agent, f luent)

Strings: Flies(Clark) represented as [F, l, i, e, s, (, C, l, a, r, k, ), ]
– referential opaque: an equal term cannot be substituted for

the one (mental object) in the scope of belief, e.g., “Clark” 6=
“Superman”

Den function: mapping a string to the object that it denotes

Name function: mapping an object to a string that is the name of
a constant that denotes the object
E.g.,

Den(”Clark”) =ManOfSteel∧Den(”Superman”) =ManOfSteel

Name(ManOfSteel) = K11

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 52



Belief theory#

Inference rules, e.g., Modus Ponens
∀apq.LogicalAgent(a)∧Believes(a, p)∧Believes(a, Concat(p, ” ⇒

”, q) ⇒ Believes(a, q)
where Concat is a function on strings that concatenates their

elements together, abbreviate Concat(p, ” ⇒ ”, q) as ”p⇒ q”

E.g., belief rules: if a logical agent believes something, then it believes
that it believes it

∀ap.LogicalAgent(a) ∧Believes(a, p) ⇒
Believes(a, ”Believes(Name(a), p)”)

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 53



Knowledge and belief

Logical omniscience:
Believes(a, φ), Believes(a, φ⇒ ψ) |= Believes(a, ψ)
– So we need a limited rational agent

Belief and knowledge: knowledge is justified true belief

∀ap.Knows(a, p) ⇔ Believes(a, p)∧T (Den(p)∧T (Den(KB(a)) ⇒
Den(p))

Belief and Time: Believes(agent, string, interval)

Knowledge and action: knowledge producing actions
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Commonsense

KB
∀xBird(x) ⇒ Flies(x)
Bird(Tweety)

KB ⊢ Flies(Tweety)??

With exceptions
∀xBird(x) ∧ x 6= Penguin ∧ · · · ⇒ Flies(x)
∀xBird(x) ∧ ¬Abnormal(x) ⇒ Flies(x)
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Commonsense reasoning: nonmonotonicity

Monotonicity of FOL

if KB ⊢ P then (KB ∧ S) ⊢ P
i.e., if P follows from KB, then it still follows when KB is aug-

mented by TELL(KB,S)

Nonmonotonicity: KB ⊂ KB′, ∃P,KB ⊢ P but KB′ 6⊢ P
Nonmonotonic logics are the formalization of reasoning with in-

complete knowledge

A solution to the frame problem and related problems
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Commonsense reasoning: paraconsistency

Triviality of FOL
α ∧ ¬α ⊢ β
i.e., everything follows from a single contradiction

Paraconsistency: {α,¬α} ⊂ KB, ∃β,KB 6⊢ β
Paraconsistent logics are the formalization of reasoning with in-

consistent knowledge
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Reasoning with incomplete knowledge

Closed World Assumption (CWA)

Let KB be a (finite) set of sentences (belief set), T (KB) theory of
KB is T (KB) = {φ|KB |= φ}

The CWA of KB, written as CWA(KB) = KB ∪KBasm, defined
as follows

1. φ ∈ T (KB) iff KB |= φ, φ is a sentence

2. ¬p ∈ KBasm iff p /∈ T (KB), p is a ground atom

3. φ ∈ CWA(KB) iff {KB ∪KBasm} |= φ
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Reasoning with incomplete knowledge

CWA

KB = {p(A), p(A) ⇒ q(A), p(B)}

T (KB) 6|= q(B), T (KB) 6|= ¬q(B)

CWA(KB) |= ¬q(B)

Problems

KB = {p(A) ∨ p(B)}

CWA(KB) |= ¬p(A) ∧ ¬p(B)
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Reasoning with incomplete knowledge#

Predicate Completion (COMP) (Negation-as-failure in Prolog)

KB = {p(A)} ⇔ ∀x.x = A⇒ P (x)

I.e., “if” half of a definition for P

∀x.P (x) ⇒ x = A

I.e., the completion formula for P

The completion of P in KB, written as PC(KB;P ), defined as
follows

COMP (KB;P ) ≡ KB ∧ (∀x.P (x) ⇒ x = A)
∀x.P (x) ⇔ x = A
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Reasoning with incomplete knowledge#

Circumscription (CIRC)

Idea (Occam principle): the only objects satisfying the property P
are those that must, given KB

Preferential semantics: minimality and minimal entailment |=m

LetM1,M2 be two models. M1 is less (preferential) thanM2, written
as M1 ≺P M2, if

1. |M1| = |M2|
2. |M1|P ⊂ |M2|P
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Reasoning with incomplete knowledge#

CIRC

Let M be a model of KB. M is said minimal (preferential) iff there
is no other models M ′ of KB such that M ′ ≺P M

Define KB |=m ψ iff ψ is true in all minimal models of KB
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Reasoning with incomplete knowledge#

Example KB

∀xBird(x) ∧ ¬ab(x) ⇒ Flies(x)
Bird(Tweety)
Penguin(Tweety) ⇒ ¬Flies(Tweety)

Set P = {ab, Penguin,Bird}. Then

KB |=m Flies(Tweety)

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 63



Reasoning with incomplete knowledge#

Default logic (DL)

Default rule: an inference rule (at meta level)

α(x):β(x)
γ(x)

E.g., Bird(x):Flies(x)Flies(x)

Default theory KB = (W,D): D is a set of default rules, W is a
set of sentences

Extension of KB??
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Reasoning with inconsistent knowledge

Maximal consistent subsets (MCS)

MCS(KB) is the set of maximal consistent subset of KB

Reasoning with incomplete and inconsistent knowledge??

In what extent commonsense reasoning can be formalized??
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The commonsense problem

Recall: What is common sense??

Commonsense is not explained, but
rely on our routines of behavior that we have learned over time
act in situations that are sufficiently unlike the routines we have

seen before

Common sense is critical to human-level intelligence and AI
AI ≈ Commonsense
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Neural representation

• Embedding representation

• Knowledge graph embedding

• Compression representation
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Embedding representation

Recall: Word embedding ⇒ Token embedding
The meaning of a token is defined as a vector in low dimensional

space
– embedding: assign the vectors for representing tokens in a vector

space

Vector semantics (distributional semantics) instantiates the DH (dis-
tributional hypothesis) by automatically learning representations

of the meaning of tokens directly from their distributions in data in
unsupervised ways
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Embedding representation

Embedding representation: representing knowledge (say words) into
low-dimensional (continuous) vector spaces

Contextualized embeddings: a model is pretrained to generate con-
textual representations of each token in a sequence, instead of
just learning a token-to-embedding table

– mapping both a token and the surrounding context of tokens
into a token embedding vector

LLMs for embedding representation
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Knowledge embedding

Knowledge embedding representation (KER): representing knowledge
into low-dimensional (continuous) vector spaces, so as to simplify
computations preserving the inherent structure of the knowledge

E.g. fit any dataset with a (continuous, differentiable) scalar function
with a single real-valued parameter

fα(x) = sin2
(

2xτ arcsin
√
α

)

any dataset can be viewed as a list of numerical valuesX = [x0, · · · , xn]
describing the data content regardless of the underlying modality
(time-series, images, sound etc.)

– say, animal shapes obtained with the different values of α

Ref. Boué L, Real numbers, data science and chaos: How to fit any
dataset with a single parameter, arXiv, 2019.
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Knowledge graph embedding

KG embedding (KGE): embedding entities and relations of a KG into
low-dimensional vector spaces, to simplify computations preserving
the inherent structure of the KG

Machine learning, especially deep learning

• Representing entities and relations.
Entities are represented as vectors (deterministic points in the vec-
tor space)

• Defining a scoring function

Defined each fact to measure its plausibility (facts observed in the
KG have higher scores).

• Learning entity and relation representations (i.e., embeddings)
Optimization problem that maximizes the total plausibility of ob-
served facts
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Distance-based embedding#

The relationships are represented as translations in the embedding
space: if (h, r, t) holds, then the embedding of t should be close to
the embedding of h plus some vector that depends on l

– i.e., the functional relation induced by the l-labeled edges cor-
responds to a translation of the embeddings

I.e., we want that
−→
h +

−→
l ≈ −→

t when(h, r, t) holds, while
−→
h +

−→
l

should be far away from
−→
t otherwise

There are various ways to embed knowledge into mathematical struc-
tures
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Compression representation

Compression representation: the format used to store or transmit data
in a more compact form than the original, for saving space, reducing
transmission time, and improving efficiency

E.g., Lossless compression, JPEG, MP3/MP4, Zip, etc.

Write streams of data x1:n := x1x2 . . . xn ∈ X n of length n from a
finite set of symbols X

- x≤j = x<j+1 := x1:j for j ≤ n
- the empty string as ǫ
- the concatenation of two strings s and r by sr
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Coding distribution

A coding distribution P is a sequence of probability mass functions
Pn : X n 7→ (0, 1]

- for all n ∈ N satisfy the constraint that Pn (x1:n) =
∑

y∈X Pn+1 (x1:ny)
for all x1:n ∈ X n, with the base case P0(ǫ) := 1 (omit the subscript
on P if no confusion)

The conditional probability of a symbol xn given previous data x<n
is defined as P (xn | x<n) := P (x1:n) /P (x<n)

with the familiar chain rules
P (x1:n) =

∏n
i=1 P (xi | x<i) and

P (xj:k | x<j) = ∏k
i=j P (xi | x<i)
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Lossless compression

Lossless compression is to encode a stream of symbols x1:n sampled
from a coding distribution P into a bitstream of minimal (expected)
length while ensuring that the original data sequence is recoverable
from the bitstream

Consider a binary source code c : X ∗ 7→ {0, 1}∗
assigns to each possible data sequence x1:n a binary code word

c (x1:n) of length ℓc (x1:n) (in bits)

To minimize the expected bits per sequence L := Ex∼P [ℓc(x)]
i.e., encoding rare sequences with more bits and frequent se-

quences with fewer bits
Theorem (Shannon’s source coding theorem, fundamental theorem
of information theory): There is the limit on possible data com-
pression as L ≥ H(P ) for any possible code, where H(P ) :=
Ex∼P [− log2 P (x)] is the entropy
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Arithmetic coding

Arithmetic coding constructs a code with almost optimal length, given
a coding distribution P and a sequence x1:n

The connection between coding and compression with prediction and
modeling

– Compressing well means modeling well in a log loss sense, and
vice-versa

• Assuming infinite precision for the arithmetic operations involved,
the arithmetic code has length −⌈logP (x1:n)⌉+1 bits, whereas the
optimal code length is − logP (x1:n) bits
• A practical implementation that is subject to B bit precision adds
further O

(

n2−B
)

bits
– negligible for 32- or 64-bit arithmetic
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Example: Arithmetic coding

Arithmetic encoding of the sequence ‘AIXI’ with a probabilistic model
P (both in blue) resulting in the binary code ‘0101001’ (in green)
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Arithmetic codec#

Arithmetic encoder: The arithmetic code of a sequence x1:n is the
binary representation of a number λ ∈ [0, 1)

- λ by narrowing down an interval that encloses λ step by step
– Initially, this interval is I0 = [0, 1)
– In step k > 0 (i.e., encoding xk ), partition the previous interval

Ik−1 = [lk−1, uk−1) into N sub-intervals Ĩk (x1) , Ĩk (x2) , . . ., one for
each letter from X = {x1, x2, . . . , xN}

– The size of sub-interval Ĩk(y) that represents letter y is (uk−1 − lk−1)·
P (y | x<k)

To encode xk, proceed with its corresponding interval, i.e., Ik =
Ĩk (xk)

Choose λ ∈ In with the shortest binary representation in the termi-
nating interval In and use that binary representation to encode x1:n
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Arithmetic codec#

Arithmetic decoder: Given λ and P decoding the k-th letter
- Starting with I0 = [0, 1)
- Finding y s.t. λ ∈ Ĩk(y) to decode xk = y
- Set Ik = Ĩk (xk) and proceed with the k+1-st letter

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 79



Prediction-compression equivalence

Theorem: Minimizing the log-loss is equivalent to minimizing the
compression rate of that model used as a lossless compressor with
arithmetic coding

⇒ Predictive models (language models) can be transformed into loss-
less compressors and vice versa

Note: current language model training protocols use a maximum-
compression objective
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Prediction-compression equivalence

Compression-based sequence prediction: any compressor can be em-
ployed for sequence prediction

- Define P (x1:n) as the coding distribution 2−ℓc(·), where ℓc (x1:n)
is the length of sequence x1:n when encoded with compressor c

- Recover the conditional distribution P (xi | x<i) by computing
2ℓc(x<i)−ℓc(x<ixi), for all xi

⇒ Any compressor (like gzip) can be used to build a conditional
generative model

Hint: Information theory and machine learning are linked as “two
sides of the same coin”

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 81



Universal coding#

Universal coding: Universal (optimal) source coding with respect to
all computable sampling distributions can be achieved by choosing
ℓc (x1:n) as the Kolmogorov complexity of x1:n

- the conditional distribution described is universally optimal over
x<i, recovering the Solomonoff predictor (Bayesian mixture of all pre-
dictors that can be programmed in a chosen Turing-complete pro-
gramming language)

Theorem: Compressing optimally is equivalent to predicting opti-
mally and vice versa
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LLMs as compressors

Prediction (LLMs) through the lens of compression as it encompasses
generalization: a model that compresses well generalizes well

LLMs are general-purpose compressors
due to their in-context learning abilities

E.g., Chinchilla 70B achieves compression rates of 43.4% on Ima-
geNet patches and 16.4% on LibriSpeech samples, beating domain-
specific compressors like PNG (58.5%) or FLAC (30.3%), respectively
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Compression and intelligence

Being able to compress well is closely related to intelligence

While intelligence is a slippery concept, file sizes are hard numbers
reducing the slippery concept of intelligence to hard file-size num-

bers

If you can compress the first 1GB of Wikipedia better than your
predecessors, your (de)compressor likely has to be smart(er).

Hutter Prize (500’000€ prize for compressing human knowledge)
http://prize.hutter1.net/

to encourage the development of intelligent compressors/programs
as a path to AGI

Compression≈intelligence??
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Neurosymbolic representation

Neuro-symbolic AI (NSAI): Integration of neural and symbolic AI
architectures to enhance reasoning and learning capabilities

Neurosymbolic representation aims to combine the strengths of neural
representation and symbolic representation by integrating them into
a unified representation

to leverage the learning capabilities of neural networks while also
incorporating the knowledge, reasoning, and explainability of symbolic
systems

• Limitations of neural networks: black-box nature, lack of inter-
pretability, and difficulty in handling symbolic reasoning

• Limitations of symbolic reasoning: difficulties in handling uncer-
tainty, scalability issues, and challenges in learning from data
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Neuro-symbols

Neuro-symbols are the basic information processing units
A neuro-symbol is a structured representation that can encode

symbolic knowledge and connect to other neuro-symbols, similar to
how neurons are interconnected in neural networks

Neuro-symbols allow for the integration of symbolic and sub-symbolic
information processing

Neuro-symbols can be hierarchically organized, with higher-level neuro-
symbols representing more abstract concepts built from lower-level
feature symbols extracted from raw data
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Learning and reasoning

Neuro-symbolic networks can learn associations between sensory data
and symbolic representations through a combination of neural network
learning and symbolic reasoning

The learned neuro-symbolic networks can then be used for tasks
such as perception, reasoning, and decision-making, combining the
strengths of neural networks and symbolic systems

The symbolic component provides explainability and interpretabil-
ity, while the neural component enables robust learning and general-
ization

E.g., KGE

Neuro-symbolics ≈ intelligence??

AI Slides 10e©Lin Zuoquan@PKU 1998-2025 13 87


